The Coming Public Point Cloud

One of the most important elements of Augmented Reality is the ability to seamlessly mesh 3D graphics with the real world.  Current AR technology simply overlays graphics on top of video–even when tracking and recognizing objects like cards and markers. The AR SDK gives the position and orientation of the tracked object to a 3D engine which then renders geometry on top of the video frame coming from the device’s camera.

A 3D scan of myself overlaid on an AR card with Vuforia.

A 3D scan of myself overlaid on an AR card with Vuforia.

New technologies like Google’s Tango Tablet use Kinect-style depth cameras to store not only the color of each pixel, but the depth and position, too. (Well, sort of–the depth camera’s resolution is much lower than that of the color camera). This means that you can build a 3D model out of what the tablet’s camera sees as you move around an environment.

Tango displaying point cloud data of what it currently sees.

Tango displaying point cloud data of what it currently sees.

This feature has huge ramifications. Tango uses this data to do what is called “localization.” This means once an area is scanned, the tablet can compare the internal 3D model of the current environment it has stored with what the camera is currently seeing. When fused with compass and gyro data, the Tango tablet can compute its precise location inside the scanned area. This doesn’t take long either. Tango starts building the model immediately. Walk back to where you started using the tablet, and Tango knows where it is.

Usually this 3D data is stored as a point cloud. This is basically a 3D point for every position the 3D camera records.  Hence, a sufficiently complicated area will look like a cloud of dots–a point cloud. You can see an example of the Tango building a point cloud with the Room Scanner Tango app.

These point clouds are important for not only localization, but AR graphical effects such as occluding rendered 3D objects with the real world.  This is because a 3D mesh can be built out of these points which can be used for occlusion, collision and other features. Having objects in between you and the augmentation occlude the 3D render is essential to nailing the feeling that an AR object is really there.

Point clouds are awesome, but building them can be frustrating. Current point cloud scanners are bulky and slow, not to mention their accuracy issues can lead to jitter and other artifacts. Also, some depth cameras run at a frame rate low enough to make it hard to create point clouds without moving very slowly through an environment. Who wants to play a game where you have to walk around and meticulously scan a room before you can start?

In order for AR games and apps to succeed, devices need to effortlessly be able to sense and detect the 3D geometry of their surroundings. Yet, quick and instant generation of point clouds is far beyond the capabilities of current mobile sensor technology.

That’s where the public point cloud comes in.

A truly great Augmented Reality platform needs to upload point clouds generated by devices to the cloud.  Then, when a user uses some hot new wearable AR glasses, it can pull down a pre-made point cloud for the current location off of a server and use that until the glasses can update it from its own sensors. The device will then upload a fresh point cloud which can be used to refine the version stored online.

You can kind of see this already–Google and Apple Maps’ 3D satellite mode use similar point cloud reconstruction techniques presumably from aerial photos and other sources. Whereas these 3D models often look like something you’d see on the original PlayStation, the public point cloud will have to be much more detailed.  As sensors on mobile devices become more advanced, the crowdsourced point cloud data will become incredibly detailed.

Apple Maps' 3D reconstruction kind of looks like an original PlayStation game. The public point cloud will have to be higher resolution.

This 3D reconstruction kind of looks like an original PlayStation game. The public point cloud will have to be higher resolution. Oh, this is also where you can bet the best pastrami sandwich on the planet.

A massive, publicly accessible point cloud is not just necessary for the next generation of AR wearable devices. But also for self driving cars, drone navigation, and robotics (which is indeed where many of these algorithms came from in the first place). Privacy implications do exist, but perhaps not more so than Google Maps’ street view, or other current technologies that give you very precise information about your location.

In the near future, almost every public place on the planet will be stored in the cloud as 3D reconstructed geometry–passively built up and constantly refined by sensors embedded on countless mobile and wearable devices, perhaps without the user even knowing.

Adult Contemporary Video Games

One of my favorite Combat Jack podcasts of 2014 is when they interviewed legendary hip hop producer, Marley Marl over the Summer.  Marly Marl invented the modern hip-hop sound most take for granted and created the Juice Crew, one of the most important groups of MCs ever.

The Juice Crew

Before producing hit records, Marley had a career as an on-air DJ, starting on Mr. Magic‘s show on KISS-FM in New York.  In the ’90s he went on to host “Future Flavas” with Pete Rock on Hot 97.  Marley Marl was also still producing hit albums for the likes of LL Cool J and Lords of the Underground.

Times change, and Marley Marl isn’t producing music for 20 year olds anymore.  While many DJs desperately hang on to their fading youth, Marley tried another tactic.  He moved over to WBLS which plays old school hip hop for a mature audience.

it just so happens, rap fans in their fourties and beyond have far more disposable income than those in their teens and twenties.  His WBLS show has gone on to be a great success.  It turns out that despite being a youth-powered movement, there’s plenty of advertising dollars in hip-hop appealing to older rap fans.

This got me thinking about video games.

A lot of veteran developers are debating about the decline of AAA games in the face of the disruptive waves of free2play and mobile.  Many gamers in their demographic agree.  If that’s the case, why not appeal to this older audience?

The challenge to monetizing these gamers is that although they have the same taste in games they may have had over a decade ago, their play styles are vastly different due to lifestyle changes.  If you’ve got kids or a demanding job, perhaps you no longer have 120+ hours to spend playing an RPG. However, you might digest the same style of game in shorter episodic bursts on a tablet or smartphone.

Some developers have caught on to this and produce what I call Adult Contemporary Video Games.  A good example is the 1980s pencil and paper RPG, Shadowrun.  Microsoft’s attempt at AAA shooter based on Shadowrun was an abject failure (although I quite liked it).  Five years later, Harebrained Schemes went from a surge of support on Kickstarter for “Shadowrun Returns” to a series of popular mobile and PC downloadable games based on the franchise.

Shadowrun for iPad

This is a smart strategy–delivering content aimed at an older audience on newer devices.  Those of us who grew up not on just the original RPG, but the SNES and Genesis games were ripe for a new entry in the series.  This model has also seen success with Wasteland 2, and surely the upcoming Bard’s Tale sequel will continue the trend.

It remains to be seen if you can develop a new IP targeted at this audience.  A lot of what you hear on Adult Contemporary radio is old artists making new music.  In games it may be the same. So far, the genre seems to bank on nostalgia by resurrecting classic franchises for an older audience on new devices with updated play styles. Especially if you include teh current wave of retro remakes. While some veteran developers excel at creating games for the new mobile f2p masses, others may be more suited for this viable slice of the market.

My Week With Project Tango

A few weeks back I got into Google’s exclusive Project Tango developers program. I’ve had a Tango tablet for about a week and have been experimenting with the available apps and Unity3D SDK.

Project Tango uses Movidius’ Myriad 1 Vision Processor chip (or “VPU”), paired with a depth camera not too unlike the original Kinect for the XBOX 360. Except instead of being a giant hideous block, it’s small enough to stick in a phone or tablet.

I’m excited about Tango because it’s an important step in solving many of the problems I have with current Augmented Reality technology. What issues can Tango solve?

POSITIONAL TRACKING

First, the Tango tablet has the ability to determine the tablet’s pose. Sure, pretty much every mobile device out there can detect its precise orientation by fusing together compass and gyro information. But by using the Tango’s array of sensors, the Myriad 1 processor can detect position and translation. You can walk around with the tablet and it knows how far and where you’ve moved. This makes SLAM algorithms much easier to develop and more precise than strictly optical solutions.

Also, another problem with AR as it exists now is that there’s no way to know whether you or the image target moved. Rendering-wise, there’s no difference. But, this poses a problem with game physics. If you smash your head (while wearing AR glasses) into a virtual box, the box should go flying. If the box is thrown at you, it should bounce off your head–big distinction!

Pose and position tracking has the potential to factor out the user’s movement and determine the motion of both the observer and the objects that are being tracked. This can then be fed into a game engine’s physics system to get accurate physics interactions between the observer and virtual objects.

OCCLUDING VIRTUAL CHARACTERS WITH THE REAL WORLD

Anyway, that’s kind of an esoteric problem. The biggest issue with AR is most solutions can only overlay graphics on top of a scene. As you can see in my Ether Drift project, the characters appear on top of specially designed trading cards. However, wave your hand in front of the characters, and they will still draw on top of everything.

Ether Drift uses Vuforia to superimpose virtual characters on top of trading cards.

Ether Drift uses Vuforia to superimpose virtual characters on top of trading cards.

With Tango, it is possible to reconstruct the 3D geometry of your surroundings using point cloud data received from the depth camera. Matterport already has an impressive demo of this running on the Tango. It allows the user to scan an area with the tablet (very slowly) and it will build a textured mesh out of what it sees. When meshing is turned off the tablet can detect precisely where it is in the saved environment mesh.

This geometry can possibly be used in Unity3D as a mesh collider which is also rendered to the depth buffer of the scene’s camera while displaying the tablet camera’s video feed. This means superimposed augmented reality characters can accurately collide with the static environment, as well as be occluded by real world objects. Characters can now not only appear on top of your table, but behind it–obscured by a chair leg.

ENVIRONMENTAL LIGHTING

Finally, this solves the challenge of how to properly light AR objects. Most AR apps assume there’s a light source on the ceiling and place a directional light pointing down. With a mesh built from local point cloud data, you can generate a panoramic render of where the observer is standing in the real world. This image can be used as a cube map for Image-based lighting systems like Marmoset Skyshop. This produces accurate lighting on 3D objects which when combined with environmental occlusion makes this truly a next generation AR experience.

A QUICK TEST

The first thing I did with the Unity SDK is drop the Tango camera in a Camera Birds scene. One of the most common requests for Camera Birds was to be able to walk through the forest instead of just rotating in place. It took no programming at all for me to make this happen with Tango.

This technology still has a long way to go–it has to become faster and more precise. Luckily, Movidius has already produced the Myriad 2, which is reportedly 3-5X faster and 20X more power efficient than the chip currently in the Tango prototypes. Vision Processing technology is a supremely nerdy topic–after all it’s literally rocket science. But it has far reaching implications for wearable platforms.

Samsung Gear VR Development Challenges with Unity3D

As you may know, I’m a huge fan of Oculus and Samsung’s Gear VR headset. The reason isn’t about the opportunity Gear VR presents today. It’s about the future of wearables–specifically of self-contained wearable devices. In this category, Gear VR is really the first of its kind. The lessons you learn developing for Gear VR will carry over into the bright future of compact, self-contained, wearable displays and platforms. Many of which we’ve already started to see.

The Gear VR in the flesh (plastic).

The Gear VR in the flesh (plastic).


Gear VR development can be a challenge. Rendering two cameras and a distortion mesh on a mobile device at a rock solid 60fps requires a lot of optimization and development discipline. Now that Oculus’ mobile SDK is public and having worked on a few launch titles (including my own original title recently covered in Vice), I figured I’d share some Unity3D development challenges I’ve dealt with.

THERMAL ISSUES

The biggest challenge with making VR performant on a mobile devices is throttling due to heat produced by the chipset. Use too much power and the entire device will slow itself down to cool off and avoid damaging the hardware. Although the Note 4 approaches the XBOX 360 in performance characteristics, you only have a fraction of its power available. This is because the phone must take power and heat considerations in mind when keeping the CPU and GPU running at full speed.

With the Gear VR SDK you can independently tell the device how fast the GPU and CPU should run. This prevents you from eating up battery when you don’t need the extra cycles, as well as tune your game for performance at lower clock speeds. Still, you have to be aware of what types of things eat up GPU cycles or consume GPU resources. Ultimately, you must choose which to allocate more power for.

GRAPHICAL DETAIL

The obvious optimization is lowering graphical detail. Keep your polycount under 50k triangles. Avoid as much per pixel and per vertex processing as possible. Since you have tons of RAM but relatively little GPU power available–opt for more texture detail over geometry. This includes using lightmaps instead of dynamic lighting. Of course, restrict your usage of alpha channel to a minimum–preferably for quick particle effects, not for things that stay on the screen for a long period of time.

Effects you take for granted on modern mobile platforms, like skyboxes and fog, should be avoided on Gear VR. Find alternatives or design an art style that doesn’t need them. A lot of these restrictions can be made up for with texture detail.

A lot of standard optimizations apply here–for instance, use texture atlasing and batching to reduce draw calls. The target is under 100 draw calls, which is achievable if you plan your assets correctly. Naturally, there are plenty of resources in the Asset Store to get you there. Check out Pro Draw Call Optimizer for a good texture atlasing tool.

CPU OPTIMIZATIONS

There are less obvious optimizations you might not be familiar with until you’ve gone to extreme lengths to optimize a Gear VR application. This includes removing as many Update methods as possible. Most update code spent waiting for stuff to happen (like an AI that waits 5 seconds to pick a new target) can be changed to a coroutine that is scheduled to happen in the future. Converting Update loops to coroutines will take the burden of waiting off the CPU. Even empty Update functions can drain the CPU–death by a thousand cuts. Go through your code base and remove all unnecessary Update methods.

As in any mobile game, you should be pooling prefabs. I use Path-o-Logical’s PoolManager, however it’s not too hard to write your own. Either way, by recycling pre-created instances of prefabs, you save memory and reduce hiccups due to instantiation.

IN CONCLUSION

There’s nothing really new here to most mobile developers, but Gear VR is definitely one of the bigger optimization challenges I’ve had in recent years. The fun part about it is we’re kind of at the level of Dreamcast-era poly counts and effects but using modern tools to create content. It’s better than the good old days!

It’s wise to build for the ground up for Gear VR than to port existing applications. This is because making a VR experience that is immersive and performant with these parameters requires all disciplines (programming, art, and design) to build around these restrictions from the start of the project.

A Weekend at Oculus Connect

I spent this past weekend at Oculus Connect and have just now had the time to process what I saw. For Oculus to go from a humble Kickstarter project a few years ago to a capacity filled conference rife with amazing demos and prototypes by countless developers is mind-boggling. I know I said VR in 2014 is like Mobile in 2002, but the pace of progress is staggering. The maturation path for VR is going to be MUCH quicker. Is it 2005 already?

...and all I got was this lousy t-shirt.

…and all I got was this lousy t-shirt.

As I stated before, Gear VR is the most important wearable platform in the universe. I’ve been developing Gear VR games for a while and am thoroughly convinced this wireless, lightweight platform will have far more reach than VR tethered to your desktop.

The GearVR demo area.

The GearVR demo area.

The apps on display were great, but I even saw a few Gear VR demos from random developers in the hotel hallways that blew away what were officially shown in Samsung’s display area. Developer interest for Gear VR is very high. Once it’s commercially available, a flood of content is soon upon us.

Despite the intense interest in the platform, I spoke to a few desktop and console developers who dismissed Gear VR as a distraction and are ignoring it–which I think is really short-sighted.

It’s true that there may be a division in audiences. Gear VR may be the larger, casual audience while apps built around Oculus’ astounding Crescent Bay platform could be for a highly monetizable market of core enthusiasts. Either route is smart business. Depending on how long you can hold out for customer traction, that is.

Oh, and Crescent Bay…was a revolution. There’s probably not much more to be said about it that hasn’t already–but the ridiculous momentum behind Oculus’ path from the DK1 to Crescent Bay makes me question the competition. Oculus has hired all of the smartest people I know and have billions of dollars to spend on VR R&D–which is their main business, not a side project. Will competitors like Sony really commit enough resources to compete with the relentless pace of Oculus’ progress?

VR in 2014 = Mobile Games in 2002?

The first VRLA Meetup last week was awesome.  The performance capture studio at Digital Domain in Marina Del Rey hosted a series of impressive demos as well as live presentations on the current state and future of VR applications.  The venue could only hold 100 people, but 300 registered.  Mobs of interested VR consumers, developers, and producers had to be turned away at the door.

VRLA winding down. (Photo via John Root)

VRLA winding down. (Photo via John Root)

After this event, it struck me that VR in 2014 is reminiscent of mobile in the early 2000s.  Back in 2002 I attended the first GDC Mobile Gaming Summit.  It was at a jam-packed lecture hall in San Jose where presenters demoed the latest in technology and gave their thoughts on where the industry was heading.

At that point, mobile phone hardware was clunky and primitive.  Most phones were still sporting 80×50 monochrome screens with maybe 100k of RAM available for programs to run.  Even if you were ‘lucky’ enough to have one of these devices, it was nearly impossible to figure out how to download games.

In 2002 almost nobody knew how to monetize mobile games.  The hardware could barely run games anyway.  Yet, these people knew it was going to be a big deal.  The room was filled with excitement and anything could happen.

Since then, mobile gaming has created a huge new audience for games that has disrupted the traditional game industry, forcing a shift in how console games are designed and delivered.  Now mobile gaming is obvious, but back in 2002 there were many naysayers–despite the fact that in Japan iMode had been successfully delivering mobile games since the late ‘90s.

To me, VR in its current state feels the same way.  The hardware is huge and clumsy.  There is some precedent for VR applications stretching way back to the 1990s with Virtuality and Battletech Centers.  And there’s a lot of consumer interest–evidenced by all the successful VR and AR hardware kickstarters in addition to the attendance of VRLA this month.

The top question on everyone’s mind is “how do I make money in VR?”  This was the same question asked by many about mobile in 2002.  Back then, the path was more obvious.  Qualcomm’s BREW and Japan’s iMode already had established billing models for mobile content.  Right now, it’s unknown who will pay for VR experiences and what form they will take. A lot of this is a hardware question. Nobody really knows what the iPhone of wearable gaming will be like–but when it arrives, it will be revolutionary.

These definitely are uncertain and exciting times for this new medium–which makes it much more fun to develop for than established platforms.

From Bits to Atoms: Creating A Game In The Physical World

Some of you may recall last year’s post about 3D printing and my general disappointment with consumer-grade additive manufacturing technology. This was the start of my year-long quest to turn bits into atoms. Since that time there has been much progress in the technology and I’ve learned a lot about manufacturing. But first, a little about why I’m doing this, and my new project titled: Ether Drift.

Ether Drift AR App

A little over a year ago, I met a small team of developers who had a jaw-dropping trailer for a property they tried to get funded as a AAA console game. After failing to get the game off the ground it was mothballed until I accidentally saw their video one fateful afternoon.

With the incredible success of wargaming miniatures and miniature-based board game campaigns on Kickstarter, I thought one way to launch this awesome concept would be to turn the existing game assets into figurines. These toys would work with an augmented reality app that introduces the world and the characters as well as light gameplay elements. This would be a way to gauge interest in the property before going ahead with a full game production.

A lot of this was based on my erroneous assumption that I could just 3D print game models and ship them as toys. I really knew nothing about manufacturing. Vague memories of Ed Fries’ 3D printing service that made figurines out of World of Warcraft avatars guided my first steps.

3D printers are great prototyping tools. Still, printing the existing game model took over 20 hours and cost hundreds of dollars in materials and machine time. Plus, 3D prints are fragile and require a lot of hand-finishing to smooth out. When manufacturing in quantity, you need to go back to old-school molding.

You can 3D print just about any shape, but molding and casting has strict limitations. You have to minimize undercut by breaking the model up into smaller pieces that can be molded and assembled. The game model I printed out was way too complicated to be broken down into a manageable set of parts.

Most of these little bits on the back and underside would have to be individual molded parts to be re-assembled later--An expensive process!

Most of these little bits on the back and underside would have to be individual molded parts to be re-assembled later–An expensive process!

So I scrapped the idea of using an existing game property. Instead, I developed an entirely new production process. I now create new characters from scratch that are designed to be molded. This starts as a high detail 3D model that is printed out in parts that molds are made from. Then, I have that 3D model turned into something that can be textured and rigged for Unity3D. There are some sacrifices made in character design since the more pieces there are, the more expensive it is to manufacture. Same goes for the painting process–the more detailed the game texture is, the more costly it becomes to duplicate in paint on a plastic toy.

We're working on getting a simple paint job that matches the in-game texture.

We’re working on getting a simple paint job that matches the in-game texture.

So, what is Ether Drift? In short: it’s Skylanders for nerds. I love the concept of Skylanders–but, grown adult geeks like toys too. The first version of this project features a limited set of figures and an augmented reality companion app.

The app uses augmented reality trading cards packed with each figure to display your toy in real-time 3D as well as allowing you to use your characters with a simple card battle game. I’m using Qualcomm’s Vuforia for this feature–the gold standard in AR.

The app lets you add characters to your collection via a unique code on the card. These characters will be available in the eventual Ether Drift game, as well as others. I’ve secured a deal to have these characters available in at least one other game.

If you are building a new IP today, it’s extremely important to think about your physical goods strategy. Smart indies have already figured this out. The workflow I created for physical to digital can be applied to any IP, but planning it in advance can make the process much simpler.

In essence, I’m financing the development of a new IP by selling individual assets as toys while it is being built. For me, it’s also a throwback to the days before everything was licensed from movies or comic books and toy store shelves were stocked with all kinds of crazy stuff. Will it work? We’ll see next month! I am planning a Kickstarter for the first series in mid-March. Stay Tuned to the Ether Drift site, Facebook page, or Twitter account. Selling atoms instead of bits is totally new ground for me. I’m open to all feedback on the project, as well as people who want to collaborate.