Samsung Gear VR Development Challenges with Unity3D

As you may know, I’m a huge fan of Oculus and Samsung’s Gear VR headset. The reason isn’t about the opportunity Gear VR presents today. It’s about the future of wearables–specifically of self-contained wearable devices. In this category, Gear VR is really the first of its kind. The lessons you learn developing for Gear VR will carry over into the bright future of compact, self-contained, wearable displays and platforms. Many of which we’ve already started to see.

The Gear VR in the flesh (plastic).

The Gear VR in the flesh (plastic).


Gear VR development can be a challenge. Rendering two cameras and a distortion mesh on a mobile device at a rock solid 60fps requires a lot of optimization and development discipline. Now that Oculus’ mobile SDK is public and having worked on a few launch titles (including my own original title recently covered in Vice), I figured I’d share some Unity3D development challenges I’ve dealt with.

THERMAL ISSUES

The biggest challenge with making VR performant on a mobile devices is throttling due to heat produced by the chipset. Use too much power and the entire device will slow itself down to cool off and avoid damaging the hardware. Although the Note 4 approaches the XBOX 360 in performance characteristics, you only have a fraction of its power available. This is because the phone must take power and heat considerations in mind when keeping the CPU and GPU running at full speed.

With the Gear VR SDK you can independently tell the device how fast the GPU and CPU should run. This prevents you from eating up battery when you don’t need the extra cycles, as well as tune your game for performance at lower clock speeds. Still, you have to be aware of what types of things eat up GPU cycles or consume GPU resources. Ultimately, you must choose which to allocate more power for.

GRAPHICAL DETAIL

The obvious optimization is lowering graphical detail. Keep your polycount under 50k triangles. Avoid as much per pixel and per vertex processing as possible. Since you have tons of RAM but relatively little GPU power available–opt for more texture detail over geometry. This includes using lightmaps instead of dynamic lighting. Of course, restrict your usage of alpha channel to a minimum–preferably for quick particle effects, not for things that stay on the screen for a long period of time.

Effects you take for granted on modern mobile platforms, like skyboxes and fog, should be avoided on Gear VR. Find alternatives or design an art style that doesn’t need them. A lot of these restrictions can be made up for with texture detail.

A lot of standard optimizations apply here–for instance, use texture atlasing and batching to reduce draw calls. The target is under 100 draw calls, which is achievable if you plan your assets correctly. Naturally, there are plenty of resources in the Asset Store to get you there. Check out Pro Draw Call Optimizer for a good texture atlasing tool.

CPU OPTIMIZATIONS

There are less obvious optimizations you might not be familiar with until you’ve gone to extreme lengths to optimize a Gear VR application. This includes removing as many Update methods as possible. Most update code spent waiting for stuff to happen (like an AI that waits 5 seconds to pick a new target) can be changed to a coroutine that is scheduled to happen in the future. Converting Update loops to coroutines will take the burden of waiting off the CPU. Even empty Update functions can drain the CPU–death by a thousand cuts. Go through your code base and remove all unnecessary Update methods.

As in any mobile game, you should be pooling prefabs. I use Path-o-Logical’s PoolManager, however it’s not too hard to write your own. Either way, by recycling pre-created instances of prefabs, you save memory and reduce hiccups due to instantiation.

IN CONCLUSION

There’s nothing really new here to most mobile developers, but Gear VR is definitely one of the bigger optimization challenges I’ve had in recent years. The fun part about it is we’re kind of at the level of Dreamcast-era poly counts and effects but using modern tools to create content. It’s better than the good old days!

It’s wise to build for the ground up for Gear VR than to port existing applications. This is because making a VR experience that is immersive and performant with these parameters requires all disciplines (programming, art, and design) to build around these restrictions from the start of the project.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s