My Week with PSVR

Full disclosure, I’ve had a PSVR devkit for some time now, so this isn’t my first experience with the device. However, this certainly is my first taste of most PSVR launch content. I figured I’d post my impressions after a week with my PSVR launch bundle.

Best Optics In the Business

PSVR does not use fresnel lenses, thus you don’t see any god rays and glare on high contrast screens. Vive and Rift both suffer from these problems, which makes PSVR look a lot better than the competition. Many cite the lower resolution of the PSVR display as a problem, but I don’t think numbers tell the whole story. The screen door effect is not very noticeable, and I suspect there’s some way PSVR is packing those pixels together that make the slightly lower resolution a non-issue. PSVR looks great.

Fully Integrated With Sony’s Ecosystem

The great thing about the platform is they are combining a mature online store and gaming social network with VR. In many cases PSVR is ahead of the competition in community features. When you first don the PSVR headset, you’ll see the standard PlayStation 4 interface hovering in front of you as a giant virtual screen. Thus, all current PSN features are available to you in VR already. You can even click the Share button and stream VR gameplay live. There’s also a pop up menu to manage your friends list, invites, etc. inside any VR experience. The only weird thing is when you get an achievement you hear the sound, but don’t see any overlay telling you what you did.

Tracking Issues

PSVR uses colored LED lights for optical tracking–essentially the same solution Sony created for their PS3 Move controllers in 2010. In fact, the launch bundle comes with what seem to be new, deadstock Move controllers as its hand tracking solution.

Tracking is iffy. It seems that lamps, bright lights, and sunlight streaking through windows can throw PSVR’s tracking off. I find that it works much better at night with the room lights visible to the PS4 Eye camera turned off. I also replaced my original PlayStation 4 Eye camera with the V2 version in the launch bundle to no avail.

Even more annoying is calibration. Holding the PSVR up in precise positions so that the lights are visible to the camera can be quite a pain. Not only that, but many games require their own calibration involving standing in a place where your head fits inside a camera overlay representing the best position to play in.

The hand controllers are jittery even under the best circumstances. Some games seem to have smoother tracking than others–probably via filtering Move input data. Still, given the price of the bundle, Move is an acceptable solution. Just not ideal.

One advantage to this approach is PSVR can also track the DualShock 4 via that previously annoying light bar on the back. Having a positionally tracked controller adds an element of immersion to non-hand tracked games previously unseen.

The Content

Despite PSVR using a PS4 which pales in power compared to, say, a juiced up Oculus-ready PC, the PSVR launch experiences are second to none. Sony is an old pro at getting together strong titles to launch a new platform. They have made some great choices here.


The amount of free content you get with the Launch Bundle is staggering. In addition to the new VR version of Playroom and a disc filled with free demos, you also get Worlds–Sony London’s brilliant showcase of VR mini games and experiences. The Deep is a perfect beginner’s VR introduction–a lush, underwater experience that rivals anything I’ve seen on Rift or Vive. London Heist is my favorite, combining storytelling and hand-tracked action in what is often compared to a VR Guy Ritchie film.

Arkham VR

This is the single coolest VR experience I’ve ever had. It’s really more like a narrative experience with some light gameplay elements. Some are complaining that this barely qualifies as a game and is way too short for $20, but I disagree. This is the gold standard in VR storytelling–a truly unique experience that a lot of developers can learn from. It combines puzzle solving, story, interactive props, and immersive environments into a VR experience that makes you really feel like the Caped Crusader. This is the game I use to showcase PSVR and nobody has left disappointed.



Battlezone is my other favorite launch title right now, if I can find other people online (a definite problem given the small, but growing PSVR user base). This is a VR update to Atari’s coin-op classic in the form of a co-op multiplayer vehicle shooter. Guide a team of futuristic tank pilots over a randomly generated hexagonal map as you journey on a quest to destroy the enemy base. This game requires great teamwork and voice communication, which makes it all the more immersive. The positionally tracked DualShock 4 adds to the immersion in the cockpit as well.


Guerilla does everything wrong (including uninterruptible tutorials) in VR here, defying all conventions. I have no problems with it, but this makes almost everyone I know violently ill. Apparently I am immune to VR sickness. Rigs is probably unplayable by the vast majority of players even with all the comfort modes turned on. If you want to test your so-called “VR Legs”, then try this game. If you can manage to play this without puking, you’re in for a great competitive online experience–that is, if you can find other players easily.

Wayward Sky

This game started out last year as a Gear VR launch title called Ikarus, which was pulled from the store shortly after its release. Uber’s small mobile VR demo has now reappeared on PSVR as the expanded and enhanced Wayward Sky–an innovative take on point-and-click adventure games in VR. The first stage is essentially a remixed and remastered version of the short Gear VR demo that came out last year. Once you complete this stage, the game opens up with a lot more levels and an all new story line. This is another gentle introduction to VR as it doesn’t involve a lot of movement or complicated mechanics. It’s largely point and click puzzle solving affair, with a few areas that require you to use your hands to manipulate objects.

In Conclusion


My dream VR platform would be PSVR’s optics, Vive’s tracking, and Oculus’ controllers. Until that singularity happens, we’re stuck with all of these different systems. PSVR is incredibly compelling, and the platform I recommend to most people. It’s cheap and surprisingly good. Most of my current favorite VR games are on PSVR right now. I personally don’t find its limitations a problem–but it will be interesting to see how the average gaming public responds. Initial sales are promising, and there is way more high profile VR content on the horizon. Dare I say Sony has won this first round?

How To Demo HoloLens Apps In Public

Last week’s VRLA Summer Expo was the first time the public got a look at my current HoloLens project, Ether Wars. Tons of people lined up to try it. I must have done well over 100 demos over the two day event. Since then, I’ve showed it to a variety of developers, executives, and investors ranging from zero experience to those who have used HoloLens quite a bit. Combined with all the demoing done at HoloHacks a few months ago, I’ve learned a lot of common sense tips when demoing mixed reality apps. I figured I’d sum up some of my presentation tricks here.

Know Your Space

HoloLens can be a very temperamental device. Although it features the most robust tracking I’ve ever seen with an AR headset, areas with a lot of moving objects (pets, crowds of people), featureless walls, windows, and mirrors can really mess things up. Also, rooms that are too dark or too bright can make the display look not so great.

If you are travelling somewhere to show your app, try to find out ahead of time what the room is like that you are demoing in. It might be possible to ask for a few alternative rooms if the space they’ve got you in is inappropriate.

And, how do you know if the space is inappropriate? Scan the room before the demo starts. In the case of Ether Wars, you have to scan the room before you play the game. This scan is saved, so subsequent games don’t have to go through that process. When I demo the game, I scan the room myself to make sure the room works before I let others use it. This not only lets me know if the room works but allows the rest of the users to skip this sometimes lengthy step.

Consider building demo-specific safety features. For instance, Ether Drift needs ceilings to spawn space stations from. In the case of a room with a vaulted ceiling the HoloLens can’t scan, a safety feature would be one that automatically spawns the bases at ceiling height for demo purposes.

Teach The Air Tap

Microsoft’s mantra for HoloLens the interfaces is “Gaze, Gesture, and Voice“-essentially a conroller-free interface for all HoloLens apps. Very cool in concept, but I find at least half the people who try the device can’t reliably perform the air tap. It’s a tricky and unnatural gesture. Most people want to reach out and poke the holograms with their finger. It takes quite a bit of explanation to teach users that they must aim with their head and perform that weird air tap motion to click on whatever is highlighted by the cursor.


Teach the user how to perform the air tap before the demo–perhaps by having them actually launch and pin the app on a wall. It might help to put a training exercise in the app itself. For instance, to start Ether Wars you have to gaze and air tap on a button to start the experience. I use this moment to teach the player how to navigate menus and use the air tap.

Worst case scenario, you can stick your arm over the player’s shoulder in view of the HoloLens and perform the air tap yourself if the user just can’t figure it out.

Check The Color Stack

Unlike VR, it’s difficult to see what the user is viewing when demoing a HoloLens app. You can get a live video preview from the Windows Device Portal. However, this can affect the speed and resolution of the app. Thus, degrading the performance of your demo. One trick I’ve used to figure out where the user currently is in the demo is to learn what the colors of the stacked display look like on different screens.


Each layer of the display shows different colors

If you look at the side of the HoloLens display you’ll see a stack of colored lights. These colors change depending on what is being shown on the screen. By observing this while people are playing Ether Wars, I’ve learned to figure out what screen people are on based on how the lights look on the side of the device. Now I don’t have to annoyingly ask “what are you seeing right now” during the demo.

None of this is rocket science–just some tips and tricks I’ve learned while demoing Hololens projects over the past month or so. Let me know if you’ve got any others to add to the list.

So, You Wanna Make A Pokemon Go Clone?

I told you not to do it.


But suddenly my 2013 blog post about displaying maps in Unity3D is now my top page of the month. There are lots of Pokemon Go clones being built right now.

Well, if you absolutely insist, here’s how I’d go about it.

Step 1: Raise tons of money

You’re going to need it. And it’s not just for user acquisition. You’ll need a lot of dry powder for scaling costs in the unlikely event this game is as successful as you’ve claimed to your investors. For small apps, accessing something like the Foursquare API may be free–but it will require an expensive licensing deal to use it at the scale you’re thinking of and without restrictions.

Step 2: Buy every single location based game you can

Just having access to a places API such as Foursquare or Factual isn’t enough. You need location data relevant to a game–such as granular details about places inside of larger locations that are of interest to players. Pokemon Go has this from years of Ingress players submitting and verifying locations around the world.

Nearly 10 years ago, there was a frenzy of investment in location based games. The App Store is now littered with dead husks of old LBS games and ones that are on life support. With that pile of money you raised, it should be easy to go on a shopping spree and buy up these games. Not for their users, or even the technology, but for the data. Most of these games may have been fallow for years, making their location data stale. Yet, it may be possible with machine learning or old fashioned elbow grease to work that data into a layer of interesting sub-locations for your game to be designed around.

Step 3: Plan for Database Hell

Designing for scale at the start is a classic mistake for any startup. You’re effectively building a football stadium for a carload of people. That doesn’t mean you shouldn’t entertain the idea of scaling up a service once it’s successful.

Full disclosure, I’ve never built an app at the scale of Pokemon Go. Few people have. I suspect many of the server issues are related to scaling a geospatial database with that many users. It’s much harder to optimize your data around location than other usage patterns. Don’t take my word for it, check out this analysis.

It’s been years since I’ve looked at geospatial databases. Despite some announcements, it doesn’t look like a lot has changed. A cursory search suggests PostGIS is still a solid choice. Plus, there are a lot of Postgres experts out there that can help with scaling issues. MongoDB’s relatively new spatial features may also be an option.

As for fancier alternatives–Google App Engine is an easy way to “magically” scale an app. They have also started releasing really interesting new geospatial services. Not to mention some great support for mobile apps that may make integrating with Unity3D a bit easier. However, GAE  is very expensive at scale, and the location features are still in alpha. Choosing Google App Engine is a risky decision, but also may be an easy way to get started.

To avoid vendor lock-in, have a migration strategy in mind. One of which may be using your pile of money to recruit backend people from startups with large amounts of users.

Step 4: Get Ready for the Disappointing State of Mobile AR

Pokemon Go has sparked a lot of renewed interest in AR. Much like geospatial databases, not much has changed in the past 5 years as far as what your average smartphone can do. Sure, beefier processors and higher res cameras can get away with some limited SLAM functionality. But, these features are very finicky. Your best bet is to keep AR to a minimum, as Pokemon Go smartly did. Placing virtual objects on real world surfaces in precise locations, especially outdoors, is the realm of next generation hardware.

Step 5: ??????

Ok, this isn’t a precise recipe for a Pokemon Go clone. But hey, if you’ve completed step one, maybe you should contact me for more details?

There’s Nothing To Be Learned From Pokemon Go

Pokemon Go is a watershed moment in gaming. I’ve never seen a game have this much traction this fast. My neighborhood is filled with wandering players of all demographics, strolling around with phone in hand looking for Pokemon. Since the game’s launch, everyday has looked like Halloween without the costumes.

In general, the job of a venture capitalist is really easy. For most, you simply wait around for another firm to invest in something and then add to that round. Or, you can wait for something to be really successful and cultivate clones of it. I can guarantee there are now a few VCs with deals in motion to build a “fast follow” mimic of Pokemon Go.

Please don’t.

There is absolutely no way another developer can duplicate the success of this game. In fact, it remains to be seen if this game will be a success beyond its initial pop. No game has ever had an opening weekend of this scale–but still, remember Draw Something or maybe even Fallout Shelter? I’m enjoying Pokemon Go myself, but many of my colleagues are questioning whether it has legs. Regardless of that, any location-based game you may be thinking of making is probably missing a few key ingredients to Pokemon Go’s success.


My pathetically low level character

Niantic has the Best Location Data in the Business

I’ve spent time building location-based service apps in the past. The biggest problem with making games that play over the real world is populating the map with interesting stuff to do. Firstly, there’s access to map data–on Pokemon Go’s scale, this is not cheap (although there are open source solutions). Simply having a map is one piece of the puzzle–you need to have information about how the locations are used. Which places are busiest? Where do players like to group up at?

Niantic has this data from years of running Ingress–pretty much the largest location-based game ever made. Over the years Ingress was running as a project fully funded and supported by Google, Niantic built an incredibly valuable data layer on top of the real world that has been repurposed for Pokemon Go.

You could possibly license similar information from other companies (Foursquare comes to mind), but Niantic’s data is probably more geared towards the activity patterns of mobile gamers than those who want to Instagram their lunch. (Granted, there’s a lot of overlap there)

Pokemon Is One of the Biggest IPs in the World

Previous to Pokemon Go, even prior to Ingress, there have been plenty of location-based games. Anyone remember Shadow Cities? Or Booyah? They may have just been too early–back then there weren’t enough smartphones to solve the density problem you have with location-based games. Now that smartphones are ubiquitous, how do you get enough players to fill up the world map? One way is to use one of the biggest video game IPs on the planet.

The demand for Nintendo IPs on other platforms is unprecedented.  The fervor for Pokemon in particular is huge–with lots of false Pokemon apps taken off Google Play and the App Store over the years. Investors have responded to this craze, with Nintendo’s stock jumping 25% since the release of Pokemon Go.

There really isn’t another IP as big as Pokemon that can be applied to a game of this scale. Sprinkle a little Pokemon on to a little Ingress and the results are explosive.

There’s nobody else on the planet that can do this. 

HoloHacks Is A Step Towards Mixed Reality Domination for Microsoft

Microsoft has been holding a series of hackathons for their new HoloLens platform in a number of cities across the US. I couldn’t make it to the original event in Seattle, but managed to compete in HoloHacks Los Angeles at the Creative Technology Center downtown.


The event went from Friday evening to Sunday afternoon, concluding with final presentations and the judges awarding prizes to the winning apps. My team’s app, “A Day at the Museum,” won the visual design prize with a mixed reality replacement for museum audio tour earpieces.

The event worked like most hackathons I’ve attended–Come up with ideas, form teams, and get to hacking. Microsoft had us covered on the hardware front–not only did each team get to borrow two HoloLens devices, but you could even get a loaner Surface Book for the event if you don’t have a Windows PC to hack on. (As a MacBook Pro user, that option was a lifesaver)

I was lucky to sit at a table with Leone Ermer, Edward Dawson-Taylor, Chris Horton, Ed Hougardy, and Steven Winston. After brainstorming a few ideas we came up with the museum tour concept and got to work. We worked brilliantly as a team and everyone was critical in taking this project across the finish line.


HoloHacks isn’t just a promotional event. It’s an important step in building a community around the platform. By iterating with refreshing openness and allowing even complete novice developers to build apps to learn about HoloLens’ capabilities, Microsoft is placing themselves way ahead of the competition not just in technology but in the ecosystem that supports it.

No other augmented reality platform can operate at this scale. By the time other platforms can catch up to Hololens’ features, Microsoft will have a thriving ecosystem of Windows Holographic developers that other hardware vendors just can’t compete with. Why use some other platform when you can easily find developers and tools for HoloLens to get the job done? If the competition were smart, they’d focus on the developer community aspect just as much as the technology.

Debugging HoloLens Apps in Unity3D

I’ve been developing on HoloLens for a few weeks now, and I’m being re-acquainted with the tricky part of debugging hardware-specific augmented reality apps in Unity3D. I went through a lot of these issues with my Google Tango project, InnAR Wars, and so I’m sort of used to it.  However, having to wear the display on your head while testing code brings a whole new dimension of difficulty to debugging Augmented Reality applications. I figured I’d share a few tips that I use when debugging Unity3D HoloLens apps other than the standard Unity3d remote debugging tools you are used to from mobile development.


Debugging in the Editor vs. Device

The first thing you need to do is to figure out how test code without deploying to the device. Generating a Visual Studio project, compiling, and uploading your application to one (or more) HoloLens headsets is a real pain when trying to iterate on simple code changes. It’s true, Unity3D can do none of HoloLens’ AR features in the editor, but there are times when you just have to test basic gameplay code that doesn’t require spatialization, localization, or any HoloLens specific features. There’s a few steps to make this easier.

Make A Debug Keyboard Input System

HoloLens relies mostly on simple gestures (Air Tap) and voice for input. The first thing you need to test HoloLens code in the Unity3D editor is a simple way to trigger whatever event fires off via Air Tap or speech commands through the keyboard. In my case, I wrote a tiny bit of code to use the space bar to trigger the Air Tap. Basically–anywhere you add a delegate to handle an Air Tap or speech command, you need to add some input code to trigger that same method via keyboard.

Use An Oculus Rift Headset

I was pleasantly surprised to find out Unity HoloLens Technical Preview supports Oculus Rift. Keep your Rift plugged in when developing for HoloLens. When you run your application in the Unity editor, it will show up inside the Rift–albeit against a black background. This is extremely helpful debugging code that uses gaze, positional audio, and even limited movement of the player via Oculus’ positional tracking.

Use The HoloLens Companion App

Microsoft provides a HoloLens companion app in the Windows Store with a few handy features. The app connects to HoloLens via WiFi and lets you record videos live from the headset (very useful for documented reproducible bugs and crashes). It lets you stop and start apps remotely which can be useful when trying to launch an app on multiple HoloLenses at the same time. You can also use your PC’s keyboard to send input to a remote HoloLens. This is convenient for multiplayer testing–use Air Tap with the one on your face, the companion app to trigger input on the other device.

These tips may make building HoloLens apps a little easier, but I really hope Microsoft adds more debugging features to future versions of the SDK. There are some simple things Microsoft could do to make development more hassle-free, although there’s really a limit to what you can do in the Unity Editor versus the device.

Developing Applications for HoloLens with Unity3D: First Impressions

I started work on HoloLens game development with Unity3D over the past week. This included going through all of the example projects, as well as building simple games and applications to figure out how all of the platform’s features work.  Here’s a some takeaways from my first week as a HoloLens developer.


Baby steps…

The Examples Are Great, But Lack Documentation

If you go through all of the Holo Academy examples Microsoft provides, you’ll go from displaying a basic cube to a full-blown multi user Augmented Reality experience. However, most of the examples involve dragging and dropping pre-made prefabs and scripts into the scene. Not a lot about the actual SDK is explained. The examples are a good way to get acquainted with HoloLens features, but you’re going to have to do more work to figure out how to write your own applications.

HoloToolkit is Incredibly Full Featured

All of the examples are based on HoloToolkit, Microsoft’s collection of scripts and prefabs that handle just about every major HoloLens application feature: input, spatial mapping, gesture detection, speech recognition, and even some networking.

I also found that features I needed (such as the placement of objects in the real world using real-time meshing as a collider) are features in the examples I could easily strip out and modify for my own C# scripts. Using these techniques I was able to get a very simple carnival milk bottle game running in a single Saturday afternoon.

Multiplayer Gets Complicated

I’m working on moving my award winning Tango RTS, InnAR Wars, to HoloLens. However, multiplayer experiences work much differently on HoloLens than Tango. In the case of Tango, each device shares a single room scan file and is localized in the same coordinate space. This means that once the game starts, placing an object (like a floating planet or asteroid) at any position will make it appear in the same real-world location on both Tangos.

HoloLens shares objects between devices using what are called Spatial Anchors. Spatial Anchors mark parts of the scanned room geometry as an anchored position. You can then place virtual objects in the real world relative to this anchor. When you share a Spatial Anchor with another device, the other HoloLens will look for a similar location in its own scan of the room to position the anchor. These anchors are constantly being updated as the scan continues, which is part of the trick to how HoloLens’ tracking is so rock solid.

Sure, having a single coordinate frame on the Tango is easier to deal with, but the Tango also suffers from drift and inaccuracies that may be symtomatic of its approach. Spatial Anchoring is a rather radical change from how Tango works–which means a lot of refactoring for InnAR Wars, or even a redesign.

First Week Down

This first week has been an enlightening experience. Progress has been fast but also made me aware of how much work it will be to produce a great HoloLens app. At least two independently published HoloLens games popped up in the Windows Store over the past few days. The race is on for the first great indie HoloLens application!